Coltrane, John
23 Sep 1926 GREG CAL
thursday GREG
| lat 34° 53' 0" | N 79°42' W
0
---------------------------------
natal (bt) 13 h 30 min
raas-rams :0h 7' 31"
reckoned bt Lat --> lmt 17 h 0 min
tu 22h 0' 0"
tsn 16h 47' 32"
---------------------------------
timezone : 5 (+W)
DST : 0 (-)
Equation of time 0h 7' 31"
ΔT 0h 0' 24"
---------------------------------
source : https://www.astro.com/astro-databank/Coltrane,_John
power points :
hyleg part of fortune (Makransky regio method)
alchocoden SA
almuten VE (Lilly) - SA (Trad)
rank points :
rank | Trad | power | dignity | rank | Lilly | power | dignity |
1 | MO | 12 | P | 2 | VE | 2 | F |
2 | VE | 3 | F | 1 | MO | 2 | P |
3 | SU | 2 | F | 4 | SA | 0 | P |
4 | SA | -2 | P | 3 | SU | -3 | F |
5 | ME | -2 | P cb | 5 | ME | -4 | P cb |
6 | JU | -4 | T | 6 | JU | -7 | T |
7 | MA | -5 | D | 7 | MA | -9 | D |
We observe that JU and MA are especially bad, being both R.
ALMUTEN LILLY | Lilly | ALMUTEN TRAD | dignity | R | |
1 | VE | 12 | -2 | F | |
2 | MO | 3 | -4 | P | |
3 | SA | 2 | -11 | P | |
4 | SU | -2 | -7 | F | |
5 | ME | -2 | -7 | P cb | |
6 | JU | -4 | -12 | T | + |
7 | MA | -5 | -18 | D | + |
Aspects : two mundane aspects
MA opp SA is the worst with -3.11 points. For this theme, it is the pivotal aspect around which the primary directions are organised.
SU conj ME is the best with -0.5 points
We analyse the primary directions for the death at 41 years, the 17 JULY 1967.
SECTEUR POINT FIXE | ||||||
CONVERSE | I-II-III | |||||
Sign [fixe] :I-II-III PM or | 15,56 | |||||
REGIO | CAMPA | 52,89 | |||||
PLAC SEMI-ARC | 55,82 | |||||
PLAC POS CIRC | 55,82 | |||||
PLAC BOUD CIRC | 55,84 | |||||
PLAC BOUD CIRC | 46,55 | |||||
REGIO | 45,12 | |||||
PLAC SEMI-ARC | 46,54 | |||||
Prom [conv]:i-ii-iii | ||||||
DIRECT | i-ii-iii | |||||
SECTEUR CONVERS |
We see in the table above all of the regio-campa and placidus direct and converse mundane directions. The direction that interests us here is:
1)- DIRECTIO RECTA REGIOMONTANUS: [☍♀ ☌♂] 45.12 Y (before application of a conversion key)
explanations
speculum | Lat | Dec | AR | MD | SA | HA |
MA | -2,6 S | 15,04 N | 47,53 | 24,35 N | 79,2 N | 54,85 W |
ꝏVE | -1,38 S | -7,13 S | 346,85 | 85,03 N | 95 N | 9,97 W |
-----------------------------------------------------------------------------------------------------
– MD = meridian distance (from MC if SA f [MA] is diurnal or IC if Sa f is nocturnal)
– SA = semi-arc (if f is diurnal, SA f [MA] is D and all MD’s and SA’s are D, otherwise N
– HA = horizontal distance (from the nearest horizon W or E for f [MA] and m ꝏVE)
under bracket [] the fixed point, (here MA)
DIRECTIO RECTA | h | -34,98 | -8,13 | ||||
DP REGIOMONTANUS (5) | DP REGIO-CAMPA C | DP REGIO-CAMPA D | |||||
A2 ꝏVE | A1 MA | A1 MA | A2 ꝏVE | A2 ꝏVE | A1 MA | ||
Tan A | tan dec/cos dm | 16,43 | -55,29 | ||||
B (1) | +LG-A or -LG+A | 51,31 | -20,41 | ||||
Tan C | cot DM.cos B/cos A | -55,22 | -8,15 | ||||
Sin pole (2) | Cos C.sin LG | 19,04 | 34,48 | ||||
Sin DA (3) | Tan pole A1.Tan Dec A2 Tan pole A2. Tan Dec A1 |
DAP | 5,32 | -2,47 | -4,93 | 10,63 | |
AO (4) | AR ± DA | 42,21 | -10,67 | -8,22 | 36,90 | ||
arc | AO1 – AO2 | 52,89 | 45,12 | ||||
CONVERS | DIRECT |
(1) B must be treated as positive number
(2) sign of pole has the same sens of LG for DA Here, DA = DA/pole A
(3) sign [-] if pole and Dec have the opposite sign – sign [+] if planet located in western half, sign [-] if planet located in eastern half ; Signs [+] and [-] must be reversed for births in the southern hemisphere
(4) to find AO of a star A2 under the pole of A1, we calculate the DA of A2 under the pole A1 ex: tan pôleA1.tan DecA2=sin DA A2/poleA1
(5) algorithm from Gouchon (‘Dictionnaire astrologique’, Dervy, 1946, 1975, p, 276, attributed to H. Selva) ; Martin Gansten (‘Primary directions’, pp155-157, 2009, Wessex Astrologer) - instructions for use only appear in Gansten – Astrologia gallica, Morin de Villefranche, trad Holden (appendix 5, pp, 151-153) -
-----------------------------------------------------------------------------------------------------
For the conversion key, we postulated several methods: it appeared to us that the EQU (ecliptic) key gave the best results.
So : the date of the even 1967.54 (40.81 Y) for a key of 1.021 gives 41.66 Y.
2)- DIRECTIO RECTA PLACIDUS gives 46.54 Y.
DP PLACIDUS | Plac direct | Plac conv |
sa1/dm1 | 1,12 | 3,25 |
sa2 | 79,20 | 95,00 |
x | 70,89 | 29,21 |
dm² | 24,35 | 85,03 |
sign | -1 | -1 |
------------------------------------------------------------------- | ||
arc | -46,54 | 55,82 |
------------------------------------------------------------------- |
FOMALHAUT-CHOISNARD
X = sa2.dm1/sa1
sign : if the two points are on either side of the meridian, take +1 ; otherwise -1
Arc = dm2 ±sign.x
The simplest system is that of Choisnard-Fomalhaut. First you need to retrieve the data from the SA (semi-arc) and the DM (meridian distance) of the nocturnal point because the altitude of MA is -34,98°. important note: the SA and DM of the two points are always counted diurnal if the first point (here MA) is above the horizon even if the second is below. They are counted nightly if the first point (MA) is below the horizon regardless of the position of the second point.
For DMs, they are counted in AR from the diurnal meridian if the fixed point MA is diurnal, and from the nocturnal meridian if it is nocturnal.
nocturnal meridian MC = 71,88°
AR MA = 47,53°
AR ꝏVE = 346,85°
SA N (δ-) ꝏVE = 95°
DM N ꝏVE = 85,03°
For the significator ꝏVE altitude (h) =-8,13°. so :
SA D (δ-) ꝏVE = 79,2°
DM N MA = 85,03°
Then we compute Saf/DMf (so : SA f [ 95°] / DM f [ 85,03°])
Sa f / DM f =1,12
and the angle x = SAm x DM f/SA f, so : SA m [ 79,2°] x DM f [ 85,03°]/SA f [ 95°]
x = 70,89°
We find the direction by DMm - x, so : DM m [ 85,03°] ± x [70,89]
We must now have regard to the double ± sign of the last expression; in the case where f (MA) and m (ꝏVE) are on either side of the meridian, the direction arc is obtained by taking the sum (instead of the difference) of the two quantities DMm and x. This is not the case here, so sign = (+)
the computation of the arc requires, depending on the case, a reduction of 360° (so arc modulo 360°)
---------------------------------
arc D =-46,54°
---------------------------------
in the technical sense, It is a direct direction but in the astrological sense, it is a true converse direction since it is an aspect considered as a promissor which goes towards the significator. ; so the m point is an aspect (here ꝏVE) and the f point is a planet or an axis, (here MA)
We can now compute the converse direction : point f is directed towards point m, i.e. the star is directed towards the aspect. This is where the problem of the orientation of the primum mobile arises because it is not concevable to rotate the local sphere in both directions… It does not seem convenient to postulate that the arc of direction is counted in the order of the signs of the zodiac (when it is direct, i.e. when one directs a promissor towards a significator): indeed, the ecliptic has nothing to do with a direction since this one depends only on the diurnal movement ( primum mobile). It is therefore otherwise that we must pass judgement on this.
That time, we compute Sa m / DM m (so : SA m [100,8] / DM m [155,65])
Sa m / DM m =3,25
and the angle x = SA f x DM m/SA m, so : SA f [ 95°] x DM m [155,65] / SA m [100,8]
x = 29,21°
We find the direction by DM f - x, so : DM f [ 85,03°] ± x [29,21°]
We must now have regard to the double ± sign of the last expression; in the case where m (ꝏVE) and f (MA) are on either side of the meridian, the direction arc is obtained by taking the sum (instead of the difference) of the two quantities DM f and x. This is not the case here, so sign = (-)
---------------------------------
arc C =55,82°
---------------------------------
3)- DIRECTIO DIRECTA [♯♂ ☌♃]
This is a mirror direction (or echo) which is established on either side of the ASC and which can be considered as dynamic rapt-parallels. They seem to have a cyclical symbolic structure.
We notice the world # of MA at 272.71° ♑. The REGIO direction is direct: 43.75 Y.
|
4)- DIRECTIO DIRECTA [♯♃ ☌♂]
What must be observed in the occurrence of these two # is that they coincide with the event but not their arrival in some way by mathematical symmetrical. We have already seen that this is the case (see previous topics). What is, of course, interesting in this case is the low value of JU and the intervention of the MA-SA opposition.
even 1967,54 | SECTEUR POINT FIXE | |||||
CONVERSE | I-II-III | |||||
Sign [fixe] :I-II-III PM or | 15,02 | |||||
REGIO | CAMPA | 52,05 | |||||
PLAC SEMI-ARC | 54,89 | |||||
PLAC POS CIRC | 54,89 | |||||
PLAC BOUD CIRC | 54,91 | |||||
PLAC BOUD CIRC | 46,03 | |||||
REGIO | 44,57 | |||||
PLAC SEMI-ARC | 46,02 | |||||
Prom [conv]:i-ii-iii | ||||||
DIRECT | i-ii-iii | |||||
SECTEUR CONVERS |
arc = 44.57 Y.
5) DIRECTIO CONVERSA : [♄ ☌ ♯♂]
Here again, we will find a doublet of # between MA and SA: these are converse directions.
It is important here to know that SA is the alchocoden (the hyleg is the POF at least considered in the Makransky system).
even 1967,54 | SECTEUR POINT FIXE | |||||
CONVERSE | VII-VIII-IX + pm or | |||||
Sign [fixe] :VII-VIII-IX PM or | 46,31 | |||||
REGIO | CAMPA | 39,11 | |||||
PLAC SEMI-ARC | 40,40 | |||||
PLAC POS CIRC | 40,47 | |||||
PLAC BOUD CIRC | 40,48 | |||||
PLAC BOUD CIRC | 44,93 | |||||
REGIO | 46,65 | |||||
PLAC SEMI-ARC | 45,02 | |||||
Prom [conv]:x-xi-xii | X-XI-XII | |||||
DIRECT | x-xi-xii | |||||
SECTEUR CONVERS |
The arc is : 39.11 Y (converse directio).
------------------------------------------------------------------------------------------------------------
♄ ☌ ♯♂ | DIRECTIO CONVERSA | h | 34,75 | 25,89 | |||
DP REGIOMONTANUS (5) | DP REGIO-CAMPA C | DP REGIO-CAMPA D | |||||
A2 (m) #MA | A1 SA | A1 SA | A2 (m) #MA | A2 (m) #MA | A1 SA | ||
Tan A | tan dec/cos dm | -17,61 | -27,63 | ||||
B (1) | +LG-A or -LG+A | 52,49 | 62,51 | ||||
Tan C | cot DM.cos B/cos A | 58,38 | -53,43 | ||||
Sin pole (2) | Cos C.sin LG | 17,45 | 19,92 | ||||
Sin DA (3) | Tan pole A1.Tan Dec A2 Tan pole A2. Tan Dec A1 |
DAP | -5,33 | -8,83 | -10,19 | -6,15 | |
AO (4) | AR ± DA | 225,08 | -95,81 | -76,80 | 236,56 | ||
arc | AO1 – AO2 | -39,11 | 46,65 | ||||
CONVERS | DIRECT |
(1) B must be treated as positive number
(2) sign of pole has the same sens of LG for DA Here, DA = DA/pole A
(3) sign [-] if pole and Dec have the opposite sign – sign [+] if planet located in western half, sign [-] if planet located in eastern half ; Signs [+] and [-] must be reversed for births in the southern hemisphere
(4) to find AO of a star A2 under the pole of A1, we calculate the DA of A2 under the pole A1 ex: tan pôleA1.tan DecA2=sin DA A2/poleA1
(5) algorithm from Gouchon (‘Dictionnaire astrologique’, Dervy, 1946, 1975, p, 276, attributed to H. Selva) ; Martin Gansten (‘Primary directions’, pp155-157, 2009, Wessex Astrologer) - instructions for use only appear in Gansten – Astrologia gallica, Morin de Villefranche, trad Holden (appendix 5, pp, 151-153) -
------------------------------------------------------------------------------------------------------------
6) DIRECTIO CONVERSA : [♂ ☌ ♯♄]
DIRECTIO CONVERSA | h | -34,98 | -27,09 | ||||
DP REGIOMONTANUS (5) | DP REGIO-CAMPA C | DP REGIO-CAMPA D | |||||
A2 (m) #SA | A1 MA | A1 MA | A2 (m) #SA | A2 (m) #SA | A1 MA | ||
Tan A | tan dec/cos dm | 16,43 | 26,66 | ||||
B (1) | +LG-A or -LG+A | 51,31 | 61,54 | ||||
Tan C | cot DM.cos B/cos A | -55,22 | 57,18 | ||||
Sin pole (2) | Cos C.sin LG | 19,04 | 18,06 | ||||
Sin DA (3) | Tan pole A1.Tan Dec A2 Tan pole A2. Tan Dec A1 |
DAP | 5,32 | 9,43 | 8,90 | 5,03 | |
AO (4) | AR ± DA | 42,21 | -278,57 | -260,24 | 52,56 | ||
arc | AO1 – AO2 | -39,22 | 47,21 | ||||
CONVERS | DIRECT |
It is a converse direction: arc = 39.22 Y
MA and SA being located on opposite sides of the horizon, the arc will be the same as SA conj #MA.
Aucun commentaire:
Enregistrer un commentaire
Remarque : Seul un membre de ce blog est autorisé à enregistrer un commentaire.