jeudi 4 juillet 2024

John COLTRANE

 Coltrane, John

23 Sep 1926 GREG    CAL
thursday GREG
 | lat 34° 53' 0" | N 79°42' W
0
---------------------------------
natal (bt) 13 h 30 min
raas-rams :0h 7' 31"
reckoned bt Lat --> lmt 17 h 0 min
tu 22h 0' 0"
tsn 16h 47' 32"
---------------------------------
timezone  : 5 (+W)
DST : 0 (-)
Equation of time 0h 7' 31"
ΔT 0h 0' 24"
---------------------------------

source : https://www.astro.com/astro-databank/Coltrane,_John

power points :
hyleg part of fortune (Makransky regio method)
alchocoden SA
almuten VE (Lilly) - SA (Trad)

rank points :

rank Trad power dignity rank Lilly power dignity
1 MO 12 P 2 VE 2 F
2 VE 3 F 1 MO 2 P
3 SU 2 F 4 SA 0 P
4 SA -2 P 3 SU -3 F
5 ME -2 P cb 5 ME -4 P cb
6 JU -4 T 6 JU -7 T
7 MA -5 D 7 MA -9 D


We observe that JU and MA are especially bad, being both R.


ALMUTEN LILLY Lilly ALMUTEN TRAD dignity R
1 VE 12 -2 F
2 MO 3 -4 P
3 SA 2 -11 P
4 SU -2 -7 F
5 ME -2 -7 P cb
6 JU -4 -12 T +
7 MA -5 -18 D +


Aspects : two mundane aspects
MA opp SA is the worst with -3.11 points. For this theme, it is the pivotal aspect around which the primary directions are organised.
SU conj ME is the best with -0.5 points


We analyse the primary directions for the death at 41 years, the 17 JULY 1967.



SECTEUR POINT FIXE



CONVERSE
I-II-III



Sign [fixe] :I-II-III PM or
15,56



REGIO | CAMPA
52,89



PLAC SEMI-ARC
55,82



PLAC POS CIRC
55,82



PLAC BOUD CIRC
55,84



PLAC BOUD CIRC
46,55



REGIO
45,12



PLAC SEMI-ARC
46,54



Prom [conv]:i-ii-iii





DIRECT
i-ii-iii





SECTEUR CONVERS



We see in the table above all of the regio-campa and placidus direct and converse mundane directions. The direction that interests us here is:

1)- DIRECTIO RECTA REGIOMONTANUS:  [☍♀ ☌♂] 45.12 Y (before application of a conversion key)

explanations


speculum Lat Dec AR MD SA HA
MA -2,6 S 15,04 N 47,53 24,35 N 79,2 N 54,85 W
ꝏVE -1,38 S -7,13 S 346,85 85,03 N 95 N 9,97 W

-----------------------------------------------------------------------------------------------------
– MD = meridian distance (from MC if SA f [MA]  is diurnal or IC if Sa f  is nocturnal)
– SA = semi-arc (if f is diurnal, SA f [MA] is D and all MD’s and SA’s are D, otherwise N
– HA = horizontal distance (from the nearest horizon W or E for f [MA] and m ꝏVE)
under bracket [] the fixed point, (here MA)


DIRECTIO RECTA h -34,98
-8,13









DP REGIOMONTANUS (5)

DP REGIO-CAMPA C
DP REGIO-CAMPA D


A2 ꝏVE A1 MA A1 MA A2 ꝏVE A2 ꝏVE A1 MA
Tan A tan dec/cos dm
16,43
-55,29

B (1) +LG-A or -LG+A
51,31
-20,41

Tan C cot DM.cos B/cos A
-55,22
-8,15

Sin pole (2) Cos C.sin LG
19,04
34,48

Sin DA (3) Tan pole A1.Tan Dec A2
Tan pole A2. Tan Dec A1
DAP 5,32 -2,47 -4,93 10,63
AO (4) AR ± DA
42,21 -10,67 -8,22 36,90
arc AO1 – AO2

52,89
45,12




CONVERS
DIRECT

(1) B must be treated as positive number
(2) sign of pole has the same sens of LG for DA Here, DA = DA/pole A
(3) sign [-] if pole and Dec have the opposite sign – sign [+] if planet located in western half, sign [-] if planet located in eastern half ; Signs [+] and [-] must be reversed for births in the southern hemisphere
(4) to find AO of a star A2 under the pole of A1, we calculate the  DA of A2 under the pole A1 ex: tan pôleA1.tan DecA2=sin DA A2/poleA1
(5) algorithm from Gouchon (‘Dictionnaire astrologique’, Dervy, 1946, 1975, p, 276, attributed to H. Selva) ; Martin Gansten (‘Primary directions’, pp155-157, 2009, Wessex Astrologer) - instructions for use only appear in Gansten – Astrologia gallica, Morin de Villefranche, trad Holden (appendix 5, pp, 151-153) -
-----------------------------------------------------------------------------------------------------
For the conversion key, we postulated several methods: it appeared to us that the EQU (ecliptic) key gave the best results.
So : the date of the even 1967.54 (40.81 Y) for a key of 1.021 gives 41.66 Y.

2)- DIRECTIO RECTA PLACIDUS gives 46.54 Y.

DP PLACIDUS Plac direct Plac conv
sa1/dm1 1,12 3,25
sa2 79,20 95,00
x 70,89 29,21
dm² 24,35 85,03
sign -1 -1
-------------------------------------------------------------------

arc -46,54 55,82
-------------------------------------------------------------------

FOMALHAUT-CHOISNARD
X = sa2.dm1/sa1
sign : if the two points are on either side of the meridian, take +1 ; otherwise -1
Arc = dm2 ±sign.x

The simplest system is that of Choisnard-Fomalhaut. First you need to retrieve the data from the SA (semi-arc) and the DM (meridian distance) of the nocturnal point because the altitude of MA is -34,98°. important note: the SA and DM of the two points are always counted diurnal if the first point (here MA) is above the horizon even if the second is below. They are counted nightly if the first point (MA) is below the horizon regardless of the position of the second point.
For DMs, they are counted in AR from the diurnal meridian if the fixed point MA is diurnal, and from the nocturnal meridian if it is nocturnal.

nocturnal meridian MC = 71,88°
AR MA = 47,53°
AR ꝏVE = 346,85°

SA N (δ-) ꝏVE = 95°
DM N  ꝏVE = 85,03°

For the  significator  ꝏVE altitude (h) =-8,13°. so :

SA D (δ-) ꝏVE = 79,2°
DM N  MA = 85,03°

Then we compute Saf/DMf (so : SA f [ 95°] / DM f [ 85,03°])

Sa f / DM f =1,12

and the angle x = SAm x DM f/SA f, so : SA m [ 79,2°] x DM f [ 85,03°]/SA f [ 95°]

 x = 70,89°

We find the direction by DMm - x, so : DM m [ 85,03°] ± x [70,89]
We must now have regard to the double ± sign of the last expression; in the case where f (MA) and m (ꝏVE) are on either side of the meridian, the direction arc is obtained by taking the sum (instead of the difference) of the two quantities DMm and x. This is not the case here, so sign = (+)
the computation of the arc requires, depending on the case, a reduction of 360° (so arc modulo 360°)
---------------------------------
arc D =-46,54°
---------------------------------
in the technical sense, It is a direct direction but in the astrological sense, it is a true converse direction since it is an aspect considered as a promissor which goes towards the significator. ; so the m point is an aspect (here ꝏVE) and the f point is a planet or an axis, (here MA)

We can now compute the converse direction : point f is directed towards point m, i.e. the star is directed towards the aspect. This is where the problem of the orientation of the primum mobile arises because it is not concevable to rotate the local sphere in both directions… It does not seem convenient to postulate that the arc of direction is counted in the order of the signs of the zodiac (when it is direct, i.e. when one directs a promissor towards a significator): indeed, the ecliptic has nothing to do with a direction since this one depends only on the diurnal movement ( primum mobile). It is therefore otherwise that we must pass judgement on this.

That time, we compute Sa m / DM m (so : SA m [100,8] / DM m [155,65])

Sa m / DM m =3,25

and the angle x = SA f x DM m/SA m, so : SA f [ 95°] x DM m [155,65] / SA m [100,8]

x = 29,21°

We find the direction by DM f - x, so : DM f [ 85,03°] ± x [29,21°]
We must now have regard to the double ± sign of the last expression; in the case where m (ꝏVE) and f (MA) are on either side of the meridian, the direction arc is obtained by taking the sum (instead of the difference) of the two quantities DM f and x. This is not the case here, so sign = (-)
---------------------------------
arc C =55,82°
---------------------------------

3)- DIRECTIO DIRECTA  [♯♂ ☌♃]

This is a mirror direction (or echo) which is established on either side of the ASC and which can be considered as dynamic rapt-parallels. They seem to have a cyclical symbolic structure.






We notice the world # of MA at 272.71° ♑. The REGIO direction is direct: 43.75 Y.


ZODIACAL DIRECTIONS




even 1967,54 SECTEUR POINT FIXE




CONVERSE X-XI-XII




Sign [fixe] :X-XI-XII PM or 4,03




REGIO | CAMPA 39,91




PLAC SEMI-ARC 40,74




PLAC POS CIRC 40,79




PLAC BOUD CIRC 40,80




PLAC BOUD CIRC 45,46




REGIO 43,75




PLAC SEMI-ARC 45,37




Prom [conv]:x-xi-xii X-XI-XII




DIRECT x-xi-xii





SECTEUR CONVERS





4)- DIRECTIO DIRECTA  []

What must be observed in the occurrence of these two # is that they coincide with the event but not their arrival in some way by mathematical symmetrical. We have already seen that this is the case (see previous topics). What is, of course, interesting in this case is the low value of JU and the intervention of the MA-SA opposition.

even 1967,54
SECTEUR POINT FIXE



CONVERSE
I-II-III



Sign [fixe] :I-II-III PM or
15,02



REGIO | CAMPA
52,05



PLAC SEMI-ARC
54,89



PLAC POS CIRC
54,89



PLAC BOUD CIRC
54,91



PLAC BOUD CIRC
46,03



REGIO
44,57



PLAC SEMI-ARC
46,02



Prom [conv]:i-ii-iii





DIRECT
i-ii-iii





SECTEUR CONVERS



arc = 44.57 Y.

5) DIRECTIO CONVERSA : [♄ ☌ ♯♂]

Here again, we will find a doublet of # between MA and SA: these are converse directions.


It is important here to know that SA is the alchocoden (the hyleg is the POF at least considered in the Makransky system).

even 1967,54




SECTEUR POINT FIXE
CONVERSE




VII-VIII-IX + pm or
Sign [fixe] :VII-VIII-IX PM or




46,31
REGIO | CAMPA




39,11
PLAC SEMI-ARC




40,40
PLAC POS CIRC




40,47
PLAC BOUD CIRC




40,48
PLAC BOUD CIRC 44,93




REGIO 46,65




PLAC SEMI-ARC 45,02




Prom [conv]:x-xi-xii X-XI-XII




DIRECT x-xi-xii





SECTEUR CONVERS




The arc is : 39.11 Y (converse directio).
------------------------------------------------------------------------------------------------------------

♄ ☌ ♯♂ DIRECTIO CONVERSA h 34,75
25,89









DP REGIOMONTANUS (5)

DP REGIO-CAMPA C
DP REGIO-CAMPA D


A2 (m) #MA A1 SA A1 SA A2 (m) #MA A2 (m) #MA A1 SA
Tan A tan dec/cos dm
-17,61
-27,63

B (1) +LG-A or -LG+A
52,49
62,51

Tan C cot DM.cos B/cos A
58,38
-53,43

Sin pole (2) Cos C.sin LG
17,45
19,92

Sin DA (3) Tan pole A1.Tan Dec A2
Tan pole A2. Tan Dec A1
DAP -5,33 -8,83 -10,19 -6,15
AO (4) AR ± DA
225,08 -95,81 -76,80 236,56
arc AO1 – AO2

-39,11
46,65




CONVERS
DIRECT

(1) B must be treated as positive number
(2) sign of pole has the same sens of LG for DA Here, DA = DA/pole A
(3) sign [-] if pole and Dec have the opposite sign – sign [+] if planet located in western half, sign [-] if planet located in eastern half ; Signs [+] and [-] must be reversed for births in the southern hemisphere
(4) to find AO of a star A2 under the pole of A1, we calculate the  DA of A2 under the pole A1 ex: tan pôleA1.tan DecA2=sin DA A2/poleA1
(5) algorithm from Gouchon (‘Dictionnaire astrologique’, Dervy, 1946, 1975, p, 276, attributed to H. Selva) ; Martin Gansten (‘Primary directions’, pp155-157, 2009, Wessex Astrologer) - instructions for use only appear in Gansten – Astrologia gallica, Morin de Villefranche, trad Holden (appendix 5, pp, 151-153) -
------------------------------------------------------------------------------------------------------------

6) DIRECTIO CONVERSA : [ ☌ ♯]










DIRECTIO CONVERSA h -34,98
-27,09









DP REGIOMONTANUS (5)

DP REGIO-CAMPA C
DP REGIO-CAMPA D


A2 (m) #SA A1 MA A1 MA A2 (m) #SA A2 (m) #SA A1 MA
Tan A tan dec/cos dm
16,43
26,66

B (1) +LG-A or -LG+A
51,31
61,54

Tan C cot DM.cos B/cos A
-55,22
57,18

Sin pole (2) Cos C.sin LG
19,04
18,06

Sin DA (3) Tan pole A1.Tan Dec A2
Tan pole A2. Tan Dec A1
DAP 5,32 9,43 8,90 5,03
AO (4) AR ± DA
42,21 -278,57 -260,24 52,56
arc AO1 – AO2

-39,22
47,21




CONVERS
DIRECT

It is a converse direction: arc = 39.22 Y

MA and SA being located on opposite sides of the horizon, the arc will be the same as SA conj #MA.







Aucun commentaire:

Enregistrer un commentaire

Remarque : Seul un membre de ce blog est autorisé à enregistrer un commentaire.